Influence of length of p-FSH treatment prior to ovum pick-up on ovarian response and *in vitro* embryo production in Holstein heifers

J. C. L. Motta¹, R. V. Sala², V. A. Absalón-Medina¹,², V. C. Fricke², M. Domínguez³, D. C. Pereira³, C. Hayden¹, E. R. Canadas¹, B. J. Duran¹, J. F. Moreno⁴, A. García-Guerra⁵

¹Department of Animal Sciences, The Ohio State University, Columbus, OH, USA; ²ST Genetics, South Charleston, OH, USA; ³ST Genetics, Deforest, WI, USA; ⁴ST Genetics, Navasota, TX, USA

INTRODUCTION

- Ovarian follicle stimulation with exogenous FSH prior to ovum pick-up (OPU) in *Bos taurus* females is a common practice to increase *in vitro* embryo production (IVP).
- The optimal stimulatory period length for OPU-IVP, however, has not been definitively ascertained.

OBJECTIVE

The objective of the present study was to determine the effect of length of the superstimulatory treatment period prior to OPU on ovarian response and IVP in Holstein heifers.

METHODS

- Non-pregnant heifers (n = 57) 13.8 ± 0.2 months of age with a body condition score of 3.0 ± 0.1 (scale 1 to 5) were assigned in a completely randomized design to one of the following experimental groups (Figure 1):
 - FSH2d – 200 mg of FSH (Folltropin®V, Vetoquinol) distributed in four injections (60, 60, 40, and 40 mg) of FSH 12 h apart
 - FSH3d – 200 mg of FSH distributed in six injections (40, 40, 40, 40, 20 and 20 mg) of FSH 12 h apart
- Superstimulatory treatments were initiated 36 h after dominant follicle removal
- An intravaginal progesterone (P4) implant (1.38 g P4 CIDR®, Zoetis) was inserted at the time of the first p-FSH injection and removed at the time of OPU
- OPU was performed in all heifers 44 h after the last p-FSH injection
- Follicle numbers were determined at OPU and classified as small (< 6 mm), medium (6–10 mm) or large (> 10 mm)
- Oocytes from different size follicles were pooled by heifer at OPU and then classified and subjected to IVP procedures
- Differences between treatment groups were evaluated using generalized linear mixed models (SAS 9.4)

RESULTS

Figure 1. Treatment schedule for heifers superstimulated during 2 or 3 days

Figure 2. Proportion of small (<6 mm), medium (6–10 mm), and large (>10 mm) follicles at OPU

Table 1. Follicle numbers by size category in heifers superstimulated during 2 or 3 days with 200 mg of p-FSH

<table>
<thead>
<tr>
<th>Size Category</th>
<th>FSH2d (n = 28)</th>
<th>FSH3d (n = 29)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Follicles (<6 mm)</td>
<td>5.9 ± 0.6</td>
<td>5.7 ± 0.8</td>
<td>0.83</td>
</tr>
<tr>
<td>Medium Follicles (6–10 mm)</td>
<td>17.0 ± 2.4</td>
<td>12.9 ± 1.6</td>
<td>0.18</td>
</tr>
<tr>
<td>Large Follicles (> 10 mm)</td>
<td>2.5 ± 0.5ª</td>
<td>4.5 ± 0.6ª</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Follicles</td>
<td>25.4 ± 2.6</td>
<td>23.1 ± 1.8</td>
<td>0.60</td>
</tr>
</tbody>
</table>

ª, b Means within a row with different superscripts differ (P < 0.05).

Figure 3. Oocyte production in heifers superstimulated during 2 or 3 days with 200 mg of p-FSH

Table 2. Oocyte recovery rate, percent viable oocytes, cleavage and blastocyst rate in heifers superstimulated during 2 vs. 3 days

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Recovery rate (%)</th>
<th>Viable Oocytes (%)</th>
<th>Cleavage rate (%)</th>
<th>Blastocyst rate (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH2d</td>
<td>62.6 ± 3.7</td>
<td>85.0 ± 2.4</td>
<td>54.7 ± 5.7</td>
<td>20.6 ± 4.0</td>
<td>0.26</td>
</tr>
<tr>
<td>FSH3d</td>
<td>56.9 ± 3.1</td>
<td>88.0 ± 3.0</td>
<td>54.1 ± 5.7</td>
<td>22.4 ± 3.7</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Figure 4. Blastocyst number in heifers superstimulated during 2 or 3 days with 200 mg of p-FSH

DISCUSSION

In conclusion, lengthening the period of FSH treatment by 1 d increases the number of large follicles (> 10 mm) at OPU, however, does not improve overall ovarian response, oocyte recovery nor embryo production.