High-resolution ribosome profiling reveals translational selectivity in the bovine blastocyst
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Introduction

Transcriptomic analyses of early mammalian embryos from multiple species have been comprehensively conducted in the last decade. However, the mRNAs detected from overall transcriptomic
profile of an embryo or a single cell does not necessarily represent their functional status, as there is a gap between the overall transcriptome and the mRNAs that are actively translated. Ribosome
profiling has been developed to infer the translational status of a specific mMRNA species and so analyze the genome-wide translatome. However, the broad application of ribosome profiling has been
slowed by its complexity and the difficulty of adapting it to low-input samples, e.g. embryos. In this study, we developed an ultra-low-input ribosome profiling protocol optimized for mammalian
embryos and systematically analyzed both polysome- and nonpolysome-bound mRNA profiles of in vitro produced bovine blastocysts.

Materials and Methods

Embryo production: In vitro produced bovine embryos were cultured to blastocyst stage, treated with 100 ng/pL cycloheximide for 10 mins and then snap frozen in storage buffer.

Polysome fraction: Ten equal fractions were collected by means of sucrose density gradient and ultracentrifugation of lysates from 100 pooled blastocysts (n=2), and subsequently subjected to RNA
Isolation and RNA sequencing analysis (Figure 1).

Immunofluorescence staining: Validation of novel active translatomic datasets.

Figure 1. Overview of procedures of embryo collection and the isolation of polysome mRNAs.
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Conclusions

* ldentified “Bona Fide” active translating mRNAs in bovine blastocyst, the selective translating these mMRNAs suggests they are essential for the function of bovine embryo implantation.

* Revealed the translation of the highly expressed, and developmentally essential pathways in the bovine blastocyst.

* The low-input ribosome profiling protocol and the data presented here set an example and open future avenues for detailed ribosome-fraction based translatome analyses to reveal novel
cellular/embryonic functional regulators beyond transcriptomic data.
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